Copied to
clipboard

G = C10×C8⋊C22order 320 = 26·5

Direct product of C10 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C10×C8⋊C22, C408C23, C20.82C24, C8⋊(C22×C10), D83(C2×C10), (C10×D8)⋊25C2, (C2×D8)⋊11C10, C4.66(D4×C10), (C2×C40)⋊29C22, SD161(C2×C10), (C2×SD16)⋊4C10, C20.329(C2×D4), (C2×C20).525D4, D42(C22×C10), (C5×D8)⋊19C22, (C5×D4)⋊13C23, C4.5(C23×C10), Q82(C22×C10), (C5×Q8)⋊12C23, C23.50(C5×D4), (C10×SD16)⋊15C2, (C22×D4)⋊11C10, (D4×C10)⋊66C22, M4(2)⋊3(C2×C10), (C2×M4(2))⋊3C10, (Q8×C10)⋊54C22, C22.23(D4×C10), (C10×M4(2))⋊13C2, (C2×C20).975C23, (C5×SD16)⋊17C22, C10.203(C22×D4), (C22×C10).172D4, (C5×M4(2))⋊29C22, (C22×C20).465C22, (C2×C8)⋊2(C2×C10), (D4×C2×C10)⋊26C2, C2.27(D4×C2×C10), C4○D44(C2×C10), (C2×C4○D4)⋊11C10, (C10×C4○D4)⋊27C2, (C2×D4)⋊15(C2×C10), (C2×Q8)⋊14(C2×C10), (C2×C4).136(C5×D4), (C2×C10).419(C2×D4), (C5×C4○D4)⋊24C22, (C2×C4).45(C22×C10), (C22×C4).76(C2×C10), SmallGroup(320,1575)

Series: Derived Chief Lower central Upper central

C1C4 — C10×C8⋊C22
C1C2C4C20C5×D4C5×D8C5×C8⋊C22 — C10×C8⋊C22
C1C2C4 — C10×C8⋊C22
C1C2×C10C22×C20 — C10×C8⋊C22

Generators and relations for C10×C8⋊C22
 G = < a,b,c,d | a10=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C10, C10, C10, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C20, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, C2×C8⋊C22, C2×C40, C5×M4(2), C5×D8, C5×SD16, C22×C20, C22×C20, D4×C10, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C23×C10, C10×M4(2), C10×D8, C10×SD16, C5×C8⋊C22, D4×C2×C10, C10×C4○D4, C10×C8⋊C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C8⋊C22, C22×D4, C5×D4, C22×C10, C2×C8⋊C22, D4×C10, C23×C10, C5×C8⋊C22, D4×C2×C10, C10×C8⋊C22

Smallest permutation representation of C10×C8⋊C22
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 28 65 79 59 37 50 11)(2 29 66 80 60 38 41 12)(3 30 67 71 51 39 42 13)(4 21 68 72 52 40 43 14)(5 22 69 73 53 31 44 15)(6 23 70 74 54 32 45 16)(7 24 61 75 55 33 46 17)(8 25 62 76 56 34 47 18)(9 26 63 77 57 35 48 19)(10 27 64 78 58 36 49 20)
(11 37)(12 38)(13 39)(14 40)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 71)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)
(1 59)(2 60)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28,65,79,59,37,50,11)(2,29,66,80,60,38,41,12)(3,30,67,71,51,39,42,13)(4,21,68,72,52,40,43,14)(5,22,69,73,53,31,44,15)(6,23,70,74,54,32,45,16)(7,24,61,75,55,33,46,17)(8,25,62,76,56,34,47,18)(9,26,63,77,57,35,48,19)(10,27,64,78,58,36,49,20), (11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65), (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28,65,79,59,37,50,11)(2,29,66,80,60,38,41,12)(3,30,67,71,51,39,42,13)(4,21,68,72,52,40,43,14)(5,22,69,73,53,31,44,15)(6,23,70,74,54,32,45,16)(7,24,61,75,55,33,46,17)(8,25,62,76,56,34,47,18)(9,26,63,77,57,35,48,19)(10,27,64,78,58,36,49,20), (11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65), (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,28,65,79,59,37,50,11),(2,29,66,80,60,38,41,12),(3,30,67,71,51,39,42,13),(4,21,68,72,52,40,43,14),(5,22,69,73,53,31,44,15),(6,23,70,74,54,32,45,16),(7,24,61,75,55,33,46,17),(8,25,62,76,56,34,47,18),(9,26,63,77,57,35,48,19),(10,27,64,78,58,36,49,20)], [(11,37),(12,38),(13,39),(14,40),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,71),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65)], [(1,59),(2,60),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F5A5B5C5D8A8B8C8D10A···10L10M···10T10U···10AR20A···20P20Q···20X40A···40P
order1222222···24444445555888810···1010···1010···1020···2020···2040···40
size1111224···4222244111144441···12···24···42···24···44···4

110 irreducible representations

dim11111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10D4D4C5×D4C5×D4C8⋊C22C5×C8⋊C22
kernelC10×C8⋊C22C10×M4(2)C10×D8C10×SD16C5×C8⋊C22D4×C2×C10C10×C4○D4C2×C8⋊C22C2×M4(2)C2×D8C2×SD16C8⋊C22C22×D4C2×C4○D4C2×C20C22×C10C2×C4C23C10C2
# reps1122811448832443112428

Matrix representation of C10×C8⋊C22 in GL6(𝔽41)

4000000
0400000
0016000
0001600
0000160
0000016
,
4020000
4010000
000010
0060040
000100
001060
,
100000
1400000
001000
0004000
0060040
0060400
,
100000
010000
0040000
0004000
000010
0029001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,6,0,1,0,0,0,0,1,0,0,0,1,0,0,6,0,0,0,40,0,0],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,0,6,6,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,29,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C10×C8⋊C22 in GAP, Magma, Sage, TeX

C_{10}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C10xC8:C2^2");
// GroupNames label

G:=SmallGroup(320,1575);
// by ID

G=gap.SmallGroup(320,1575);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽