Copied to
clipboard

G = C10xC8:C22order 320 = 26·5

Direct product of C10 and C8:C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C10xC8:C22, C40:8C23, C20.82C24, C8:(C22xC10), D8:3(C2xC10), (C10xD8):25C2, (C2xD8):11C10, C4.66(D4xC10), (C2xC40):29C22, SD16:1(C2xC10), (C2xSD16):4C10, C20.329(C2xD4), (C2xC20).525D4, D4:2(C22xC10), (C5xD8):19C22, (C5xD4):13C23, C4.5(C23xC10), Q8:2(C22xC10), (C5xQ8):12C23, C23.50(C5xD4), (C10xSD16):15C2, (C22xD4):11C10, (D4xC10):66C22, M4(2):3(C2xC10), (C2xM4(2)):3C10, (Q8xC10):54C22, C22.23(D4xC10), (C10xM4(2)):13C2, (C2xC20).975C23, (C5xSD16):17C22, C10.203(C22xD4), (C22xC10).172D4, (C5xM4(2)):29C22, (C22xC20).465C22, (C2xC8):2(C2xC10), (D4xC2xC10):26C2, C2.27(D4xC2xC10), C4oD4:4(C2xC10), (C2xC4oD4):11C10, (C10xC4oD4):27C2, (C2xD4):15(C2xC10), (C2xQ8):14(C2xC10), (C2xC4).136(C5xD4), (C2xC10).419(C2xD4), (C5xC4oD4):24C22, (C2xC4).45(C22xC10), (C22xC4).76(C2xC10), SmallGroup(320,1575)

Series: Derived Chief Lower central Upper central

C1C4 — C10xC8:C22
C1C2C4C20C5xD4C5xD8C5xC8:C22 — C10xC8:C22
C1C2C4 — C10xC8:C22
C1C2xC10C22xC20 — C10xC8:C22

Generators and relations for C10xC8:C22
 G = < a,b,c,d | a10=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C10, C10, C10, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C20, C20, C20, C2xC10, C2xC10, C2xC10, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C40, C2xC20, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C22xC10, C22xC10, C2xC8:C22, C2xC40, C5xM4(2), C5xD8, C5xSD16, C22xC20, C22xC20, D4xC10, D4xC10, D4xC10, Q8xC10, C5xC4oD4, C5xC4oD4, C23xC10, C10xM4(2), C10xD8, C10xSD16, C5xC8:C22, D4xC2xC10, C10xC4oD4, C10xC8:C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2xD4, C24, C2xC10, C8:C22, C22xD4, C5xD4, C22xC10, C2xC8:C22, D4xC10, C23xC10, C5xC8:C22, D4xC2xC10, C10xC8:C22

Smallest permutation representation of C10xC8:C22
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 28 65 79 59 37 50 11)(2 29 66 80 60 38 41 12)(3 30 67 71 51 39 42 13)(4 21 68 72 52 40 43 14)(5 22 69 73 53 31 44 15)(6 23 70 74 54 32 45 16)(7 24 61 75 55 33 46 17)(8 25 62 76 56 34 47 18)(9 26 63 77 57 35 48 19)(10 27 64 78 58 36 49 20)
(11 37)(12 38)(13 39)(14 40)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 71)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)
(1 59)(2 60)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28,65,79,59,37,50,11)(2,29,66,80,60,38,41,12)(3,30,67,71,51,39,42,13)(4,21,68,72,52,40,43,14)(5,22,69,73,53,31,44,15)(6,23,70,74,54,32,45,16)(7,24,61,75,55,33,46,17)(8,25,62,76,56,34,47,18)(9,26,63,77,57,35,48,19)(10,27,64,78,58,36,49,20), (11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65), (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,28,65,79,59,37,50,11)(2,29,66,80,60,38,41,12)(3,30,67,71,51,39,42,13)(4,21,68,72,52,40,43,14)(5,22,69,73,53,31,44,15)(6,23,70,74,54,32,45,16)(7,24,61,75,55,33,46,17)(8,25,62,76,56,34,47,18)(9,26,63,77,57,35,48,19)(10,27,64,78,58,36,49,20), (11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65), (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,28,65,79,59,37,50,11),(2,29,66,80,60,38,41,12),(3,30,67,71,51,39,42,13),(4,21,68,72,52,40,43,14),(5,22,69,73,53,31,44,15),(6,23,70,74,54,32,45,16),(7,24,61,75,55,33,46,17),(8,25,62,76,56,34,47,18),(9,26,63,77,57,35,48,19),(10,27,64,78,58,36,49,20)], [(11,37),(12,38),(13,39),(14,40),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,71),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65)], [(1,59),(2,60),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F5A5B5C5D8A8B8C8D10A···10L10M···10T10U···10AR20A···20P20Q···20X40A···40P
order1222222···24444445555888810···1010···1010···1020···2020···2040···40
size1111224···4222244111144441···12···24···42···24···44···4

110 irreducible representations

dim11111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10D4D4C5xD4C5xD4C8:C22C5xC8:C22
kernelC10xC8:C22C10xM4(2)C10xD8C10xSD16C5xC8:C22D4xC2xC10C10xC4oD4C2xC8:C22C2xM4(2)C2xD8C2xSD16C8:C22C22xD4C2xC4oD4C2xC20C22xC10C2xC4C23C10C2
# reps1122811448832443112428

Matrix representation of C10xC8:C22 in GL6(F41)

4000000
0400000
0016000
0001600
0000160
0000016
,
4020000
4010000
000010
0060040
000100
001060
,
100000
1400000
001000
0004000
0060040
0060400
,
100000
010000
0040000
0004000
000010
0029001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,6,0,1,0,0,0,0,1,0,0,0,1,0,0,6,0,0,0,40,0,0],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,0,6,6,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,29,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C10xC8:C22 in GAP, Magma, Sage, TeX

C_{10}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C10xC8:C2^2");
// GroupNames label

G:=SmallGroup(320,1575);
// by ID

G=gap.SmallGroup(320,1575);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<